Classification of Upper and Lower Face Action Units and Facial Expressions using Hybrid Tracking System and Probabilistic Neural Networks
نویسندگان
چکیده
The most of the human emotions are communicated by changes in one or two of discrete facial features. Theses changes are coded as Action Units (AUs). In this paper, we develop a lower and upper face AUs classification as well as six basic emotions classification system. We use an automatic hybrid tracking system, based on a novel two-step active contour tracking system for lower face and cross-correlation based tracking system for upper face to detect and track of Facial Feature Points (FFPs). Extracted FFPs are used to extract some geometric features to form a feature vector which is used to classify input image sequences into AUs and basic emotions, using Probabilistic Neural Networks (PNN) and a Rule-Based system. Experimental results show robust detection and tracking and reasonable classification where an average AUs recognition rate is 85.98% for lower face and 86.93% for upper face and average basic emotions recognition rate is 96.11%. Key-Words: Active contours, Action Units, Facial Expressions, Probabilistic Neural Networks
منابع مشابه
Analysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملFacial Expressions Recognition in a Single Static as well as Dynamic Facial Images Using Tracking and Probabilistic Neural Networks
An efficient, global and local image-processing based extraction and tracking of intransient facial features and automatic recognition of facial expressions from both static and dynamic 2D image/video sequences is presented. Expression classification is based on Facial Action Coding System (FACS) a lower and upper face action units (AUs), and discrimination is performed using Probabilistic Neur...
متن کاملRecognizing Upper Face Action Units for Facial Expression Analysis
We develop an automatic system to analyze subtle changes in upper face expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal image sequence. Our system recognizes fine-grained changes in facial expression based on Facial Action Coding System (FACS) action units (AUs). Multi-state facial component ...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature- Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملFacial Action Unit Recognition from Video Streams with Recurrent Neural Networks
Facial expressions are one of the parameters for accessing individual behavioral processes. Their recognition and verification can be framed as the identification of states of dynamical systems generated by physiological processes. Whereas a snap shot of a dynamical system gives information about its current state, a time series of past states captures its trajectory in state space. The descrip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006